Загадка - «Разделить по справедливости»
Любитель загадок
5 Апреля 2018
Разделить по справедливости
Трое крестьян: Иван, Петр и Николай - за выполненную работу получили мешок зерна. На беду под рукой не оказалось мерки и пришлось делить зерно на глазок.Старший среди крестьян - Иван - рассыпал зерно на три кучи, как он считал, поровну:
- Первую кучу возьми ты, Петр, вторая достанется Николаю, а третья мне.
- Я не согласен на это, - возразил Николай, - моя куча зерна ведь самая маленькая.
Поспорили крестьяне. Чуть до ссоры не дошло. Пересыпают зерно из одной кучи в другую, из другой в третью и никак к согласию не придут, обязательно кто-нибудь недоволен.
- Будь мы вдвоем, я да Петр, - вскричал в сердцах Иван, я бы мигом разделил. Рассыпал бы зерно на две равные кучи и предложил бы Петру выбрать любую, а оставшуюся взял бы себе. Оба мы были бы довольны. А тут не знаю, как и быть.
Задумались крестьяне, как же разделить зерно, чтоб все были довольны, чтоб каждый был уверен, что получил не меньше трети. И придумали. Придумайте и вы.
Ответ: Иван предложил делить зерно так:
- Я рассыпаю зерно на три кучи, на мой взгляд, поровну и отхожу в сторону. Мне подойдет любая из куч.
Пусть затем Петр укажет наименьшую, по его мнению, кучу зерна. Если Николай также посчитает, что зерна в этой куче меньше трети, то отдайте ее мне, а остаток зерна делите между собой известным уже способом.
Если же Николай решит, что в указанной куче не меньше трети зерна, пусть возьмет ее себе. Петр возьмет наибольшую, по его мнению, кучу, а оставшаяся достанется мне.
Крестьяне последовали предложению Ивана, разделили зерно и, довольные, разошлись.
- Я рассыпаю зерно на три кучи, на мой взгляд, поровну и отхожу в сторону. Мне подойдет любая из куч.
Пусть затем Петр укажет наименьшую, по его мнению, кучу зерна. Если Николай также посчитает, что зерна в этой куче меньше трети, то отдайте ее мне, а остаток зерна делите между собой известным уже способом.
Если же Николай решит, что в указанной куче не меньше трети зерна, пусть возьмет ее себе. Петр возьмет наибольшую, по его мнению, кучу, а оставшаяся достанется мне.
Крестьяне последовали предложению Ивана, разделили зерно и, довольные, разошлись.
Комментарии
Похожие загадки
Любитель загадок
28 Мая 2015
Загадка №3994.
Одно швейцарское общество насчитывает 50 членов. Родной язык всех 50 членов общества - немецкий, но 20 из них говорят еще и на итальянском, 35 из них владеют французским и 10 не знают ни итальянского, ни французского.Сколько членов общества говорят и французским и итальянским?
Ответ: Из 50 членов общества 10 говорят только на родном (немецком) языке. Другие 40 членов общества, кроме родного языка, владеют также французским или итальянским языком. Так как 20 + 35 = 55, а 55 – 40 = 15, то делаем вывод, что 15 членов общества говорят и на французском и на итальянским.
Mr. Goodcat
17 Мая 2017
Помогите решить.
Помогите решить загадку.
Ответ: 90,5 кг. Решение в комментариях.
Света
29 Апреля 2015
Загадка №2233.
Василию, Петру, Семену и их женам Наталье, Ирине, Анне вместе 151 год. Каждый муж старше за свою жену на 5 лет. Василий на 1 год старше Ирины. Наталье и Василию вместе 48 лет, Семену и Наталье вместе 52 года. Кто на ком женат, и сколько кому лет? (Возраст должен быть выражен в целых числах).
Ответ: Василий (26) - Анна (21); Петр (27) - Наталья (22); Семен (30) - Ирина (25)
Любитель загадок
26 Июля 2018
Рукопожатия
Докажите, что за всю историю человечества было чётное количество людей, сделавших нечётное количество рукопожатий.
Ответ: Рукопожатие засчитывается каждому из пары, поэтому, если просуммируем рукопожатия по всем людям, получим их удвоенное количество - четное число. Сумма по людям, сделавшим четное количество - также четная, отсюда она должна быть четной и для людей, сделавших нечетное количество рукопожатий. Это возможно, только если их четное число.
Алексеевич
17 Мая 2015
Загадка №3961.
В Америке дату 1 июля 2003 года записывают так: 7/1/2003, а в других странах: 1/7/2003. Если не знать, в каком формате записанное число, то скольких дат в году можно истолковать неверно?
Ответ: Если есть число 13, можно догадаться что это день, а не месяц. То есть запутаться можно в числах до 12, включая и 12. Всего возможных комбинаций 12x12=144. Но каждый месяц будет иметь одну дату, которая в каждом случае будет понятна правильно, например 7/7/2003. В итоге всего можно истолковать неправильно дней 144-12=132.